Skip to main content

It is the International Scientific Review of the Ethical Packaging Charter Foundation. A bimonthly publication in which 7 multidisciplinary articles are presented, relating to packaging, selected by several magazines of the digital science world.

In this Number:

 

Chemical Migration from Wine Contact Materials.
Wine quality and safety is affected by the food contact materials (FCMs) used. These materials are expected to protect the beverage from any chemical, physical, or biological hazard and preserve its composition stable throughout its shelf-life. However, the migration of chemical substances from FCMs is a known phenomenon and requires monitoring. This review distinguishes the migrating chemical substances to those of (i) industrial origin with potential safety effects and those of (ii) natural occurrence, principally in cork (ex. tannins) with organoleptic quality effects. The review focuses on the migration of industrial chemical contaminants. Migration testing has been applied only for cork stoppers and tops, while other materials like polyethylene terephthalate (PET) bottles with aluminum cups, paperboard cartons, stainless steel vats, and oak casks have been examined for the presence of chemical migrating substances only by wine analysis without migration testing. The dominant analytical techniques applied are gas and liquid chromatography coupled to mass spectrometry (MS) for the determination of organic compounds and Inductively Coupled Plasma Atomic Emission Spectroscopy (ICP-AES) and ICP-MS for elemental analysis. Targeted approaches are mostly applied, while limited non-target methodologies are reported. The identified migrating substances include authorized substances like phthalate plasticizers, monomers (bisphenol A), antioxidants (Irganox 1010), known but non-authorized substances (butylparaben), break-down products, oxidation products (nonylphenol), polyurethane adhesive by-products, oligomers, ink photoinitiators, and inorganic elements. A preliminary investigation of microplastics’ migration has also been reported. It is proposed that further research on the development of comprehensive workflows of target, suspect, and non-target analysis is required to shed more light on the chemical world of migration for the implementation of an efficient risk assessment and management of wine contact materials.

 

https://www.mdpi.com/2076-3417/14/15/6507

 

 

Evaluation of Exposure to Bisphenol Analogs through Canned and Ready-to-Eat Meal Consumption and Their Possible Effects on Blood Pressure and Heart Rate.
Bisphenols are endocrine-disrupting chemicals used in plastics and resins for food packaging. This study aimed to evaluate the exposure to bisphenol A (BPA), bisphenol S (BPS), and bisphenol F (BPF) associated with the consumption of fresh, canned, and ready-to-eat meals and determine the effects of bisphenols on blood pressure and heart rate. Forty-eight healthy young adults were recruited for this study, and they were divided into the following three groups: fresh, canned, and ready-to-eat meal groups. Urine samples were collected 2, 4, and 6 h after meal consumption, and blood pressure and heart rate were measured. The consumption of ready-to-eat meals significantly increased urine BPA concentrations compared with canned and fresh meal consumption. No significant difference in BPS and BPF concentrations was observed between the groups. The consumption of ready-to-eat meals was associated with a significant increase in systolic blood pressure and pulse pressure and a marked decrease in diastolic blood pressure and heart rate. No significant differences were noted in blood pressure and heart rate with canned and fresh meal consumption. It can be concluded that total BPA concentration in consumed ready-to-eat meals is high. High BPA intake causes increase in urinary BPA concentrations, which may, in turn, lead to changes in some cardiovascular parameters.

 

https://www.mdpi.com/2072-6643/16/14/2275

 

 

Municipal Solid Waste Management in Laos: Comparative Analysis of Environmental Impact, Practices, and Technologies with ASEAN Regions and Japan.
Municipal solid waste management in developing countries faces limitations, especially concerning technologies for treatment and disposal, which is crucial for achieving environmental and economic sustainability goals. This paper investigates municipal solid waste management in Laos, compared with the ASEAN-Japan regions, focusing on background information, waste characteristics, environmental impact, and treatment technologies for resource utilization. The findings indicate a continuous rise in municipal waste generation in Laos, particularly in the capital Vientiane, from 0.21 million tons in 2012 to 0.37 million tons in 2021. Treatment methods include unsanitary landfilling, basic recycling, and open dumping, as well as burning or discharge into rivers, posing potential risks to the environment and human health. Japan and Singapore have shown decreasing trends, with Japan reducing from 45.23 million tons in 2012 to 40.95 million tons in 2021 and Singapore from 7.27 million tons in 2021 to 6.94 million tons in 2021. Laos encounters challenges in managing municipal waste, especially in waste recovery and waste-to-energy practices, crucial elements of integrated solid waste management aimed at promoting environmental and economic sustainability. Enhancing waste management in Laos involves developing a waste management act with segregation, recycling, and extended producer responsibility policies. Implementing mechanical biological treatment facilities, waste-to-energy plants, and upgraded landfills is crucial. Capacity building and public awareness campaigns on waste management will improve sustainability, reduce environmental impacts, and advance sustainable development goals for sustainable cities and communities.

 

https://www.mdpi.com/2076-3298/11/8/170

 

 

Development of Functional Composite Edible Films or Coatings for Fruits Preservation with Addition of Pomace Oil-Based Nanoemulsion for Enhanced Barrier Properties and Caffeine for Enhanced Antioxidant Activity.
The aim of this study was to develop functional composite edible films or coatings for fruit preservation by the addition of bioactive components in combinations that have not yet been thoroughly studied, according to the relevant literature. Edible films were initially composed of (i) chitosan (CH), cellulose nanocrystals (CNC) and beta-cyclodextrin (CD) (50%-37.5%-12.5% ratio), and (ii) hydroxypropyl methylcellulose (HPMC), cellulose nanocrystals (CNC) and beta-cyclodextrin (CD) (50%-37.5%-12.5% ratio). The bioactive components incorporated (5, 10 and 15% v/v) were as follows: (i) pomace oil-based nanoemulsion (NE) aiming to enhance barrier properties, and (ii) caffeine (C), aiming to enhance the antioxidant activity of films, respectively. Indeed, NE addition led to very high barrier properties (low oxygen and water vapor permeability), increased flexibility and reduced color. Furthermore, the contribution of these coatings to fresh strawberries’ preservation under cold storage was investigated, with very promising results concerning weight loss, color difference, and preservation of fruit moisture and quantity of O2 and CO2 inside the packages. Additionally, C addition led to very high antioxidant activity, reduced color and improved barrier properties. Finally, the contribution of these coatings to avocado’s preservation under cold storage was investigated, with very encouraging results for color difference, hardness and peroxide value of the fruit samples.

 

https://www.mdpi.com/1420-3049/29/16/3754

 

 

Intelligent Biopolymer-Based Films: Promising New Solutions for Food Packaging Applications.
The development of biopolymer-based films represents a promising direction in the packaging industry that responds to stringent needs for sustainability, reducing the ecological impact. Traditional fossil-derived polymers present major concerns because of their long decomposition time and their significant contribution to the pollution of the environment. On the contrary, biopolymers such as chitosan, PVA, and PLA offer viable alternatives. This study aimed to obtain an innovative pH indicator for smart packaging using a synthetic non-toxic anthocyanin analogue dye incorporated in bio-based films to indicate meat freshness and quality. The pH-responsive color-changing properties of the dye make it suitable for developing intelligent films to monitor food freshness. The obtained polymeric films were characterized by FT-IR and UV–VIS spectroscopy, and their thermal properties were assessed using thermogravimetric methods. Moisture content, swelling capacity, and water solubility of the polymeric films were also evaluated. The sensitivity of the biopolymer–flavylium composite films to pH variations was studied in the pH range of 2 to 12 and noticeable color variations were observed, allowing the monitoring of the meat’s quality damage through pH changes. The pH-responsive films were applied directly on the surface or in the proximity of pork and chicken meat samples, to evaluate their colorimetric response to fresh and spoilt meat. This study can be the starting point for creating more durable packaging solutions leading to a circular economy.

 

https://www.mdpi.com/2073-4360/16/16/2256

 

 

Recent Developments in Technology for Sorting Plastic for Recycling: The Emergence of Artificial Intelligence and the Rise of the Robots
Plastics recycling is an important component of the circular economy. In mechanical recycling, the recovery of high-quality plastics for subsequent reprocessing requires plastic waste to be first sorted by type, color, and size. In chemical recycling, certain types of plastics should be removed first as they negatively affect the process. Such sortation of plastic objects at Materials Recovery Facilities (MRFs) relies increasingly on automated technology. Critical for any sorting is the proper identification of the plastic type. Spectroscopy is used to this end, increasingly augmented by machine learning (ML) and artificial intelligence (AI). Recent developments in the application of ML/AI in plastics recycling are highlighted here, and the state of the art in the identification and sortation of plastic is presented. Commercial equipment for sorting plastic recyclables is identified from a survey of publicly available information. Automated sorting equipment, ML/AI-based sorters, and robotic sorters currently available on the market are evaluated regarding their sensors, capability to sort certain types of plastics, primary application, throughput, and accuracy. This information reflects the rapid progress achieved in sorting plastics. However, the sortation of film, dark plastics, and plastics comprising multiple types of polymers remains challenging. Improvements and/or new solutions in the automated sorting of plastics are forthcoming.

 

https://www.mdpi.com/2313-4321/9/4/59

 

 

Valorization of Fruit and Vegetable Waste into Sustainable and Value-Added Materials.
This review aims to streamline the approach to assessing the most used valorization methods for fruit and vegetable waste (FVW) that are eco-friendly, cost-effective, and sustainable within a circular economy framework. Green processing technologies for the extraction of bioactive compounds from FVW, their applications, and the technico-economical assessment of FVW’ biorefinery to support circular economy are highlighted. Important value-added products generated by FVW include bioactive compounds, pectin, protein isolates, such as soy, natural pigments such as anthocyanins, quinones, carotenoids, betalains, and chlorophyll. At this time, the prospects of using FVW have increased in the food supplements, bioactive and edible food packaging, agriculture, energy, and water purification fields. The findings report that proper management of FVW not only minimizes their addition to landfills in the absence of composting, but also promotes the efficient utilization of resources for the development of innovative materials with a wide range of beneficial applications. Implementing the possible solutions described in this paper would not only reduce environmental impact, but also open up new economic opportunities through the valorization of FVW.

 

https://www.mdpi.com/2813-0391/2/3/15

 

 

[ Download the Document