Skip to main content

It is the International Scientific Review of the Ethical Packaging Charter Foundation. A bimonthly publication in which 7 multidisciplinary articles are presented, relating to packaging, selected by several magazines of the digital science world.

In this number:

 

Poly- and Perfluoroalkyl Substance (PFAS) Analysis in Environmental Matrices: An Overview of the Extraction and Chromatographic Detection Methods.
Per- and polyfluoroalkyl substances (PFASs) are carbon–fluorine compounds with widespread industrial and domestic use, posing potential toxicological risks to humans and ecosystems. Several analytical methods have been developed to assess the occurrence of PFASs in the environment, but a standardized method, applicable to all matrices, is still lacking. This paper reviews the extraction and chromatographic detection methods for PFAS assessment in environmental samples, considering parameters such as the LOD, LOQ, and recoveries. Solid phase extraction (SPE) is commonly used, showing high recovery rates for water, soil, and sediment samples using HBL and WAX polymeric sorbents (85–100% and 93–111.5%, respectively).

 

https://www.mdpi.com/2673-4532/5/2/12

 

 

Packaging Material Use Efficiency of Commercial PET and Glass Bottles for Mineral Water.
The influence of the bottle material (glass, PET), the reusability (reusable and disposable bottles), and the carbonization (still, medium, classic mineral water) on the filling ratio, packaging material use efficiency, cost, and shelf life were evaluated. Two hundred different bottles were purchased and characterized regarding their filling volume, the weight of the bottle, the weight of the closure, the weight of the label, and the maximum full-rim volume of the bottle. The packaging material use efficiency was calculated. The shelf life was evaluated by calculating the water vapor and carbon dioxide transmission rates. The ratio of filling volume to the packaging weight of disposable PET bottles was, on average, two times higher compared to returnable PET bottles and 20 times higher compared to glass bottles. Shelf life was, on average, higher than factor two for glass bottles compared to PET bottles. On average, but not in all cases, mineral water packaged in disposable PET bottles was cheaper compared to reusable PET and glass bottles. This paper provides a benchmark for the packaging community, especially when data for life cycle assessment are required, and the different advantages and disadvantages of different bottle materials for mineral water are shown.

 

https://www.mdpi.com/2306-5710/10/2/25

 

 

Microplastic Release from Single-Use Plastic Beverage Cups.
Microplastics (MPs) have attracted considerable attention as one of the most remarkable food and drink pollutants in recent years. Disposable cups, which are widely used as single-use containers, have been suspected as the primary sources of MPs found in cold and hot beverages. In this study, the effect of different exposure times (0, 5, 10 and 20 min) and temperatures (4 °C, 50 °C and 80 °C) on MP release from the single-use cups made of four different materials [polypropylene (PP), polystyrene (PS), polyethylene (PE) coated paper cups and expanded polystyrene (EPS)] into the water was investigated. The number of MPs ranged from 126 p/L to 1420 p/L, while the highest and lowest counts were observed in the PP (50 °C for 20 min) and PE-coated paper cups (4 °C 0 min), respectively. Washing the cups with ultrapure water prior to use reduced the MP release by 52–65%. SEM images demonstrated the abrasion on the surface of the disposable cups as a result of hot water exposure. Intensities of FTIR absorbance levels at some wavelengths were decreased by the water treatment, which could be evidence of surface abrasion. The annual MP exposure of consumers was calculated as 18,720–73,840 by the consumption of hot and cold beverages in disposable cups. In conclusion, as the level and potential toxicity of MP exposure in humans are not yet fully known, this study sheds light on the number of MPs transferred to cold and hot beverages from single-use disposable cups..

 

https://www.mdpi.com/2304-8158/13/10/1564

 

 

Effect of Drying Conditions and Jojoba Oil Incorporation on the Selected Physical Properties of Hydrogel Whey Protein-Based Edible Films.
Edible hydrogel coatings or films in comparison to conventional food packaging materials are characterized as thin layers obtained from biopolymers that can be applied or enveloped onto the surface of food products. The use of lipid-containing hydrogel packaging materials, primarily as edible protective coatings for food applications, is recognized for their excellent barrier capacity against water vapor during storage. With the high brittleness of waxes and the oxidation of different fats or oils, highly stable agents are desirable. Jojoba oil obtained from the jojoba shrub is an ester of long-chain fatty acids and monovalent, long-chain alcohols, which contains natural oxidants α, β, and δ tocopherols; therefore, it is resistant to oxidation and shows high thermal stability. The production of hydrogel films and coatings involves solvent evaporation, which may occur in ambient or controlled drying conditions. The study aimed to determine the effect of drying conditions (temperature from 20 to 70 °C and relative humidity from 30 to 70%) and jojoba oil addition at the concentrations of 0, 0.5, 1.0, 1.5, and 2.0% on the selected physical properties of hydrogel edible films based on whey protein isolate.

 

https://www.mdpi.com/2311-5637/10/2/105

 

 

A Mechanical Model for Stress Relaxation of Polylactic Acid/Thermoplastic Polyurethane Blends.
Polylactic acid (PLA) is considered a promising biodegradable polymer alternative. Due to its high brittleness, composite materials made by melt blending thermoplastic polyurethane (TPU) with PLA can enhance the toughness of PLA. To understand the forced aging caused by stress relaxation in polymer materials, this study explains the stress relaxation experiments of PLA/TPU blends with different mass ratios under applied strain through mechanical model simulations. The Kelvin representation of the standard linear solid model (SLSM) is used to analyze the stress relaxation data of TPU/PLA blends, successfully explaining that the Young’s moduli (E1 and E2) of springs decrease with increasing temperature and TPU content. The viscosity coefficient of the PLA/TPU blends decreases with increasing temperature, and its reciprocal follows the Arrhenius law. For TPU/PLA blends with increased concentration of TPU, the activation energy for stress relaxation shows a linear decrease, confirmed by the glass transition point measured by DMA, indicating that it does not involve chemical reactions.

 

https://www.mdpi.com/2504-477X/8/5/169

 

 

Engineered Nanomaterial Coatings for Food Packaging: Design, Manufacturing, Regulatory, and Sustainability Implications.
The food industry is one of the most regulated businesses in the world and follows strict internal and regulated requirements to ensure product reliability and safety. In particular, the industry must ensure that biological, chemical, and physical hazards are controlled from the production and distribution of raw materials to the consumption of the finished product. In the United States, the FDA regulates the efficacy and safety of food ingredients and packaging. Traditional packaging materials such as paper, aluminum, plastic, and biodegradable compostable materials have gradually evolved. Coatings made with nanotechnology promise to radically improve the performance of food packaging materials, as their excellent properties improve the appearance, taste, texture, and shelf life of food. This review article highlights the role of nanomaterials in designing and manufacturing anti-fouling and antimicrobial coatings for the food packaging industry. The use of nanotechnology coatings as protective films and sensors to indicate food quality levels is discussed. In addition, their assessment of regulatory and environmental sustainability is developed. This review provides a comprehensive perspective on nanotechnology coatings that can ensure high-quality nutrition at all stages of the food chain, including food packaging systems for humanitarian purposes.

 

https://www.mdpi.com/2072-666X/15/2/245#B202-micromachines-15-00245

 

 

Plastic and Micro/Nanoplastic Pollution in Sub-Saharan Africa: Challenges, Impacts, and Solutions.
Sub-Saharan Africa faces increasing levels of plastic production and importation, unregulated usage, and inadequate waste management systems. This region’s harsh conditions often lead to plastic breaking down into microplastics and nanoplastics. This review explores the abundance of micro/nanoplastics across different environmental mediums, such as surface waters, sediments, and aquatic organisms, in sub-Saharan African countries. It also highlights knowledge gaps concerning the region’s abundance of micro/nanoplastics. The effects of plastics and micro/nanoplastics on food production, water quality, health, and the environment are discussed. Strategies to address the challenges of plastic pollution are proposed. Finally, the review concludes with future perspectives for addressing the ongoing challenges of plastic waste management in sub-Saharan Africa. The materials for this study were sourced from published articles on Scopus, Google Scholar, ResearchGate, and additional platforms, including reports and various press releases, using keywords such as plastic waste, micro/nano-plastic, sub-Saharan Africa, toxicity, and circular economy. Articles were initially screened by reviewing abstracts, followed by a thorough reading of full papers to identify relevant studies. Key information was extracted from these selected articles and incorporated into this review.

 

https://www.mdpi.com/2673-4060/5/2/18

 

 

[ Download the document